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This paper complements the instability theory of frontal waves investigated by 
Orlanski (1968), and reinterprets the unstable modes obtained. First, the stability of a 
frontal model is reconsidered by using a matrix method. The major part of Orlanski’s 
(1968) result is verified but some flaws are found in some parameter regions: unstable 
modes do not exist over the entire Ri-Ro region. Also, the features of the neutral waves 
in the one-layer subsystems are studied, in order to determine the instability of the full 
two-layer system. As a result, the unstable mode called the (B)-mode by Orlanski 
(1968) and suggested by Sakai (1989) to be Rossby-Kelvin instability caused by a 
resonance between a Rossby wave and a gravity wave, proves to be a geostrophic 
unstable mode caused by resonance between a Rossby wave and the Rossby-gravity 
mixed mode. In addition, some of the analytical conclusions about the stability of this 
frontal model are explained by the features of the neutral waves in the one-layer 
subsystem. 

1. Introduction 
In the classical theory of extratropical cyclones, which originated with the Norwegian 

school, it was suggested that the warm equatorial airmass and the cold polar airmass 
form a discontinuous interface, and because of the instability of the frontal surface, 
disturbances develop there to become extratropical cyclones. The problem of the 
stability of a simple frontal surface was formulated by Kotschin (1 932), Orlanski 
(1968) and others. 

Kotschin (1932) considered the stability of the interface in a situation wherein two 
incompressible homogeneous fluids with a slight density difference flow in the x*- 
direction with a shear of AU. The fluids were bounded above and below by two rigid 
horizontal planes with a gap between them of H (figure 1). Because of mathematical 
difficulties, he only studied the case in which the wavenumber of the disturbance 
vanishes (the case in which the scale of the disturbance is very large) and also the 
condition in which a neutral wave exists which propagates with the mean speed of the 
basic flow. 

Orlanski (1968) investigated the same problem of the stability of the frontal surface 
comprehensively for various combinations of the parameters by numerical calculation, 
and obtained the following results. The basic state of this frontal model is characterized 
by the Richardson number Ri, and the wavenumber of the disturbance is expressed by 
the Rossby number Ro, defined in 92, equations (16) and (17). Rayleigh shear 
instability (R) exists at small Ri, Kelvin-Helmholtz instability (H) exists at large Ro 
and small Ri, shear instability (R) and geostrophic baroclinic instability (E) 
simultaneously exist at small Ro and Ri > 2 (the growth rate of (R) is larger than that 
of (E)), and finally a combination of geostrophic and Kelvin-Helmholtz instability (B) 
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FIGURE 1.  Frontal surface model. 
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FIGURE 2. Results of Orlanski (1968): the (R)-mode overlies the (E)-mode. The shaded areas 
indicate complex eigenvalues (non-zero phase speed). 

exists at Ri > 2 and Ro < 1 (but not too small). Unstable waves exist over the entire 
region of (Ri, Ro)-space and these unstable modes occupy mutually exclusive regions 
except where the (E)- and (R)-modes simultaneously exist. These results are 
schematically redrawn in figure 2 (figure 10 in Orlanski’s paper). 

Incidentally, in the 1960s when Orlanski’s paper was written, the classification of the 
unstable modes was done by investigating the features of the velocity field and of the 
energy transformation, and the classification by Orlanski (1968) stated above was 
mainly made on this basis. In the 1980s, however, an idea already familiar in plasma 
physics that an unstable mode can be understood as a resonance between neutral 
waves, began to be applied to instability problems in fluid mechanics (e.g. Cairns 1979; 
Hayashi & Young 1987). The analysis of resonant neutral modes represents an 



Orlanski's instability theory of frontal waves 215 

alternative way of describing the instabilities. Although the consideration of the energy 
is the basis for identifying the unstable modes, the analysis of neutral waves also will 
help us to understand the dynamics of the instabilities. Sakai (1989) studied a two-layer 
problem, and suggested that the (B)-mode in Orlanski (1968) could be a Rossby-Kelvin 
instability caused by resonance between a Rossby wave and a Kelvin wave, although 
the problem he investigated was not completely the same as Kotschin's (1932) or 
Orlanski's (1968), and it was no more than a suggestion. 

Thus, the theory for the stability of the frontal surface was started by Kotschin 
(1932), investigated by Orlanski (1968), and then Sakai (1989) attempted an 
interpretation from a new point of view, but some problems are still left. The first 
problem arises from the method which Orlanski (1968) used to search for the 
eigenvalues. Because of the primitive computing power of that day, he had to use the 
shooting method, which is a kind of Newton method (trial and error method). The 
advantage of this method is that an eigenvalue and the corresponding eigenfunction 
can be obtained in a relatively short time as long as a good initial guess is available for 
the solution, while the disadvantage is that one cannot be sure of the uniqueness of the 
solution obtained (e.g. Nakamura 1988). Hence, the question arises whether there 
might be other overlooked unstable modes. The next problem is that the points in the 
(Ri, Ro)-plane for which Orlanski (1968) made the computations were not dense 
enough. It seems that he completed the diagram shown in figure 2 (his figure 10 is more 
detailed than this) by inter- and extrapolating the sparse results. Accordingly the 
question arises whether his diagram is really correct. For example, on the boundaries 
of (B) and (R) or of (R) and (H), four different modes converge to one point and 
diverge to four again. This is an unusual branch, since usually only two modes 
converge to one point. If this diagram is right, such fourfold branching occurs all along 
these boundaries, which seems unnatural. Furthermore, it is not yet clear how the 
unstable modes are classified from the new standpoint of the resonance between 
neutral waves. It would be particularly interesting to know whether Sakai's (1989) 
suggestion, that the (B)-mode is a Rossby-Kelvin instability, is true. 

At present, a front is regarded as the result of the development of an extratropical 
cyclone rather than the cause of it. Thus, this problem of the stability of a frontal 
surface has reduced importance as a theory of the development of an extratropical 
cyclone, which was the main interest of Kotschin (1932) and Orlanski (1968). In the 
atmosphere and the ocean, however, there are many phenomena in which fluids with 
different densities form a frontal surface and disturbances develop there. Hence frontal 
stability retains its importance in meteorology, physical oceanography and geophysical 
fluid dynamics. Nevertheless, this important and fundamental problem has not been 
completely investigated. In this paper, we re-examine the results of Orlanski (1968) and 
classify the unstable modes. First, in $2 this problem is formulated and the equations 
to be solved are derived. In 53 the computed results are shown and the results of 
Orlanski (1968) are re-examined. To classify the unstable modes obtained from the 
standpoint of the resonance between neutral waves, features of the neutral waves in a 
reduced one-layer fluid are investigated in 54. Using the results in 54, the unstable 
modes in $3 are explained in $5.  

2. Basic equations for the instability problem of the frontal system 
2.1. Basic equations 

As stated in the introduction, the system considered here is that studied by Kotschin 
(1932) and Orlanski (1968). Two layers of incompressible homogeneous fluid are 
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bounded above and below by rigid horizontal planes at z* = 0 and z* = H.  In the basic 
state, the fluid of each layer flows uniformly in the x,-direction (figure 1). The stability 
of this state is considered hereafter. 

The basic equations under the hydrtostatic and Boussinesq approximations are as 
follows : 

P*1 -P*2 = APgY*, (2) 

(3) -- ar* - --V*-(?I*v*J = V**((H-?I*)v,,), 
at* 

where V, = (a/ax,,a/ay*) is the horizontal gradient operator, k is the vertical unit 
vector, u , ~  = ( u * ~ ( x * ,  y*, t*), U * ~ ( X * ,  y,, t*)) is the velocity in thejth layer, P*~(x,, y*, t*) 
is the pressure in the jth layer (excluding the hydrostatic part), q*(x*, y*, t*) is the 
height of the interface, f is the Coriolis parameter, H is the depth of the fluids, g is the 
gravitational acceleration, p is the averaged density of the fluids, and Ap is the density 
difference between fluids 1 and 2. 

In the basic state, fluid of each layer flows homogeneously in the x,-direction 

where ( 5 )  

We allow this steady state to be perturbed by a small amount. The variables are divided 
into the basic part and the disturbance part: 

u*j = ui+u:j, v*j = V i j ,  p*, = e + p : j ,  q* = Tj+& (6) 
where p*j 3 -P!jY*, f = (H/L)Y*. (7) 
These are substituted in the basic equations, and the terms of higher order are 
neglected. Assuming a sinusoidal form in the x,-direction (u&, ~ & , p : ~ ,  7: cc eik(s*-c * > ,  ) 

the variables are non-dimensionalized as 

Thus, we get the non-dimensional equations 
iRo(c+ l)u, = -v,+4iRiRopl, 

iRo(c + 1) v, = u1 + 2 dpJdy, 
iRo(c-l)u2 = -v2+4iRiRop,, 

iRo(c - 1) v2 = u2 + 2 dp2/dy, 
P1 =P2 = 7, 

1 d  
2Ri dy iRo(c+l)Y = iRoyu,+--(yv,), 

1 d  
2Ri dy iRo(c-l)y = -iRo(l-y)u2---((1-y)v2). 



Orlanski’s instability theory of frontal waves 217 

Non-dimensional parameters Ro and Ri are defined as 

2.2. Boundary conditions 
We can get the boundary conditions at y = 0 and 1 by investigating the solutions at 
y < 0 and y > 1. The motion of the fluid at y > 1 is described by the equations of motion 
in the x- and y-directions and the equation of non-divergence. Hence, when y > 1, the 
linearized and non-dimensionalized equations for the small disturbances are (9), (1 0) 
and 

(18) 
Eliminating u1 and pl, we get 

(19) 
Since the solution that remains finite as y +  00 is 

9 (20) - A e-2RIRO” 

we get dvl/dy = - 2Ri Ro v,. (21) 

2iRi Ro u1 + dv,/dy = 0. 

4Ri2 Ro2 v, - d2vl/dy2 = 0. 

1 -  

Substitution of (21) into (18) results in 

u1 = -1121,. 

Because of the continuity of p1 and v1 (accordingly the continuity of u1 and vl), we 
obtain the following boundary condition : 

u1 = -iv, at y = 1. 

u, = iv, at y = 0. 
In a similar way, we get 

(23) 

(24) 

Furthermore, u,, v1 regular at y = 0, (25) 

u,,v, regular at y = 1, (26) 
are assumed. 

2.3. Derivation of the eigenvalue problem 
Orlanski (1968) eliminated uj and vj, and derived the equations for p1 and pz. However, 
following Sakai (1989), we will derive equations of the form Az = cz in this subsection, 
because we can then get the eigenvalues c directly. 

At first, we obtain the vorticity equations by subtracting dldy of (9) from 2iRi Ro 
times (lo), and d/dy of (11) from 2iRilRo times (12), 

iRo(c + 1) Cl = D,, 
iRo(c- 1) C, = D,, 

where Q and Di express the vorticity and the divergence in each layer, respectively: 

C, 3 2iRi Ro v, - du,/dy, 
Di = 2iRi Ro uj  -k dv,/dy. 

8 FLM 2 5 5  
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Addition of (15) to (14) and subtraction of (15) from (14) gives 

1 
2iRo CT = ~ 2Ri (FD, - FD,), (31) 

1 
2Ri 2iRo 7 = ~ (FD, + FD,), 

where FDj is the divergence of the mass transport in each layer, 

(33) 

(34) 

d FD, = 2iRiRoyu,+-((yv,), 
dY 

dY 
d FD, = 2iRi Ro(1 - y )  u2 +-((1 - y) 0,). 

From (31) and (32), we obtain 

c(FD, + FD,) = FD, - FD,. 

iRo c(u, - u,) + iRo(u, + u,) = - (0, - 0,) +4iRi Ro 7. 

iRoc(u,-u,)+iRo(u,+u,) = yD,+(l -y )  D,, 

(35) 

Also, substitution of (13) into (9)-(11) results in 

(36) 

Substituting (32) into (36), we get 

(37) 
where FD, - ul = yD,  and FD, + u, = (1 - y )  D,  are used. Therefore, the equations for 
the eigenvalue problem are as follows: 

iRo cc, = -iRo c1 + D,, 

iRo cc, = iRo 5, + D,, 

c(FD, + FD,) = FD, - FD,, 

iRoc(u,-u,) = -iRo(u,+u,)+yD,+(l -y) D,. 

(38) 

(39) 

(40) 

(41) 

3. Numerical solutions 
The numerical results, which are obtained by solving the eigenvalue problem 

(38)-(41) under the boundary conditions (23E(26) will be shown in this section. The 
numerical method is described in detail in Appendix A. 

Figure 3 shows the isolines of (ci( for the first and the second unstable modes 
(unstable modes with the largest and the second largest growth rates, for given values 
of Ri and Ro) in the (Ri, Ro)-plane. The region 0 < Ro < 3 and 0 < Ri < 3 is shown 
for the first unstable mode, but only 0 < Ro < 1 and 2 < Ri < 3 for the second 
unstable mode. Figures 4, 5 and 6 show the values of c, and lcil as functions of Ro for 
the cases Ri = 1 .O, 2.1 and 3.0, respectively. 

By comparing figure 3 with figure 2 (the result of Orlanski 1968), the following facts 
are made clear. First, the curve of c = 0 can be recognized as the boundary of the 
(R)-region in figure 3 (partly as the boundary of the (E)-region). This curve starts at 
(Ro, Ri) = (0,2), having a singularity at Ro = 1 and approaching Ri - 2RoP2 
asymptotically as Ro grows; this agrees with the numerical results by Orlanski (1968) 
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FIGURE 3. The isolines of IcJ for the first mode as a function of Ri and Ro. The contour intervals are 
0.05. Hatched areas indicate the regions where there is no unstable mode (where IcJ of the first mode 
is zero). Refer to figure 2 for the location of the (R)-, (E)-, (B)- and (H)-modes. The isolines of IcJ 
for the second mode are shown only in the region 0 < Ro < 1.0 and 2.0 < Ri < 3.0. 

and the analytical results by Kotschin (1932). The transition from the boundary of the 
(E)-region to that of the (R)-region occurs at Ri - 2.10, Ro - 0.48, although Orlanski 
(1968) gave the values as Ri - 2.05, Ro - 0.35. 

The features of the (R)- and (E)-modes are almost the same as the results by Orlanski 
(1968) that are sketched in figure 2. For the (R)-mode (see figure 3), the value of \cJ 
approaches 1 as either Ri or Ro decreases. Except in the region of Ro - 1 and 
Ri > 1, lcdl diminishes in value as either Ri or Ro increases. The (R)-mode extends as 
far as the curve of c = 0 mentioned above (except for the region of Ri > 2 and small 
Ro where this mode extends beyond this curve). The (E)-mode is located in the region 
of Ri > 2 and small Ro, and lies underneath the (R)-mode (compare figures 4 and 5). 
Figure 5 shows that the values of c are pure imaginary both for the (R)-mode and for 
the (E)-mode. 

Where the (E)- and (R)-modes simultaneously exist, they approach each other as Ro 
grows, to coalesce into a new mode (B) (see figure 6) .  The value of c for the (B)-mode 
is complex, and as Ro grows further, the value of lcll decreases, finally to vanish where 
this (B)-mode ends. These features of the (B)-mode agree with the results by Orlanski 
(1968), apart from a slight discrepancy. He thought that Ic,I vanished together with IcJ, 

8-2 
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FIGURE 4. The values of c, and lcJ as functions of Ro at Ri = 1.0. Unstable modes are shown by thick 
lines. Instability occurs where two dispersion curves intersect. Dashed lines indicate the Doppler- 
shifted dispersion curves of the one-layer problem for the same Ri (see 5 5 ) .  

and hence the (B)-mode extended as far as the curve of c = 0 to bound on the (R)- 
mode, whereas I c ,~  does not vanish in reality as shown by figure 6, and consequently 
there is a gap between the (B)- and (R)-regions where there is no unstable mode (see 
figure 3). 

The behaviour of the unstable modes in the region of (H) is quite different from the 
results by Orlanski (1968). Although he thought that a single unstable mode with 
characteristics of Kelvin-Helmholtz instability spread over this region, figure 3 shows 
that this region is not so simple. There exist several unstable modes; some of them are 
overlapping and some of them have a gap with the neighbouring mode. Thus, there is 
no unstable mode in some regions, and there is more than one unstable mode in other 
regions. 

In this way, the early results of Orlanski (1968) in the regions of (R), (E) and part 
of (B), are verified by this study, but the regions of (H) and part of (B) were not 
correctly described by him. In particular, his result that unstable waves exist in the 
entire (Ri, Ro)-plane is incorrect. 

The dispersion relations of figures 4, 5 and 6 show that instability occurs where two 
dispersion curves intersect. Hence, the unstable modes can be interpreted as resonances 
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FIGURE 5. Same as figure 4, but for Ri = 2.1. Unstable mode (E) appears at Ro < 0.45. 

between neutral waves, as done by Satomura (1981), Hayashi & Young (1987), Sakai 
(1989) and others. There will be a consideration of which waves resonate to cause the 
unstable modes in later sections. 

Another conspicuous feature of figures 4, 5 and 6 is that there are many dispersion 
curves bunched around c = f 1. These bundles of dispersion curves will be also 
explained in later sections. 

4. Waves in a one-layer fluid 
According to Sakai (1989), the physical mechanism of an unstable mode in the two- 

layer problem can be understood as a resonance between neutral waves in the reduced 
one-layer subsystems. To identify the waves which resonate to cause the unstable 
modes found in the previous section, we will consider the one-layer subsystem in this 
section, by making the depth of the upper (or lower) layer infinite. If we look at this 
subsystem moving with the homogeneous basic flow in the x,-direction, it is equivalent 
to a flow over a slope followed by a flat bottom. (The fluid is bounded by a rigid plane 
over the flat bottom. See figure 7.) For this one-layer system, one can easily imagine 
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FIGURE 6. Same as figure 4, but for Ri = 3.0. Unstable modes (R) and (E) simultaneously exist at 
Ro < 0.1, and they coalesce into a new mode (B) at 0. I < Ro < 0.6. The unstable mode located around 
Ro = 1.0 is also an (R)-mode. 

FIGURE 7. Reduced one-layer problem. 
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that there exist inertial gravity waves and topographical Rossby waves. The unstable 
modes in the two-layer model can be understood as resonances between these inertial 
gravity waves and Rossby waves, whose features are relatively well known. 

In fact, a very similar problem is that in physical oceanography of ‘edge waves’ 
which are trapped on a gently sloping beach or continental shelf. Since the situation 
we are considering now is, of course, unnatural as a model for a sloping shelf, exactly 
the same problem has not been solved yet. For example, in Reid’s (1958) model, the 
sloping shelf is semi-infinite, and in those of Robinson (1964) and Mysak (1968), the 
sloping shelf has a finite width that drops off vertically into deep water of constant 
depth. The problem we are considering now is governed by the same basic equations 
in the internal region, but has different boundary conditions from these previous 
studies. 

4.1. Basic equations 
The non-dimensional basic equations for each Fourier component at 0 < y < 1 are as 
follows : 

iRocu = -v+4iRiRoq, (42) 
(43) iRo cv = u + 2 dq/dy, 

1 d  
2Ri dy 

iRoc7 = iRoyu+--(yu). 

The boundary conditions are the same as those for the two-layer problem: 

u=-iv at y = l ,  
u and v regular at y = 0, 

expressed in terms of u and u (see (23) and (25) in $2), and 

dq/dy = -2RiRoq at y = 1, 
7 and dy/dy regular at y = 0, 

(44) 

(45) 
(46) 

(47) 
(48) 

expressed in terms of 7 and dyldy ((3.13), (3.16) in Orlanski 1968). 
Eliminating u and v, this problem reduces to an equation for one variable, 7. 

Equations (42) and (43) allow u and v to be expressed as linear functions of 7 and 
d7ldY? 

9 (49) 
4Ri Ro2 CT + 2 dy/dy 

U =  Ro2 c2 - 1 

.4Ri Ro 7 + 2Ro c dyldy v = -1  
Ro2 c2 - 1 

Substitution of (49) and (50) in (44) results in an equation for q, 

(51) 1 + 2/c) - 4Ri2 Ro2 y] 7 = 0. 

4.2. Eigenvalues and eigenfunctions 
Solving (51) under the boundary conditions (47) and (48), is a problem of 
Sturm-Liouville type. Hence, it has an infinite series of eigenvalues h,(n = 0,1,2,. . .), 

(52) Ri(Ro2 c i  - 1 + 2/c,) = h,(Ri Ro). 

Since this is a cubic equation for c,, there exist three c, for each n. 
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Let us see what kind of wave each mode corresponds to. Assume that each wave 
satisfies either Roc, < 1 or Roc, % 1 ; the modes are split clearly into waves of low 
frequency and high frequency. For the modes with Ro c, < 1, by neglecting Ro2 ck, we 
obtain 

(53) 
2 

cn - A,(RiRo)/Ri+ 1.  

For Ri Ro & 1, since A,(RiRo) is almost equal to 4RiRo(n+i) (this can be obtained 
by considering the behaviour of Laguerre functions (Appendix B), the concrete form 
of 7% being given in (60)), the relation (53) becomes 

2 
cn - 4Ro(n+i)+ 1’ (54) 

and this corresponds to almost geostrophic-balanced Rossby modes. On the other 
hand, for the modes with Roc, % 1, by neglecting 2Ri/c,, we obtain 

c,-+- 1 ( 1 +  A,(RiRo)Y 
-Ro Ri ’ 

(55)  

For RiRo 9 1, (55)  becomes 

and these correspond to PoincarC modes. 

Substitution of z = 4RiRoy and 7, E ecZRZRoy(, = e-i2[, into (51) results in 
The eigenfunction 7, corresponding to the eigenvalue A, can be obtained as follows. 

and this 6, satisfies the boundary condition, 

(58) ~- - 0 at z = 4Ri Ro. 
dz 

Equation (57) is Laguerre’s differential equation, and the solutions which are regular 
at z = 0 are expressed by Laguerre functions (Appendix B). Thus, we obtain 

or 

(0) 

m - 2  
= L A,, ,(4RiRoy), 

= e -ZR2Roy~(o )  
n ,(4Ri Roy). 

m - 1  

(59) 

4.3. Special cases 
We cannot obtain the values of A,  analytically in general, but A, for the fundamental 
mode can be obtained. When v = 0, Laguerre function Lp)(z) becomes LIp)(z) = 1, 
which clearly satisfies the boundary condition dLp)(z)/dz = 0 at z = 4RiRo. Hence, 
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4 = e-kz is one of the eigenfunctions. Moreover, when v < 0, LF)(z) never satisfies 
dLP)(z)/dz = 0 (Appendix B), and thus Lr)(z)  = 1 is the eigenfunction for the smallest 
eigenvalue. Consequently, we obtain the zeroth (fundamental) eigenvalue, 

AO/4Ri Ro - f = 0, 

or A, = 2Ri Ro, (61)  

and the fundamental eigenfunction, 

70 = CZRi R u  y. 

We can also obtain c,, 

or 
- l f ( l + S R o ) ;  

2Ro c, = 

(The other solution, c, = l /Ro ,  is not acceptable, because u and v cannot be 
determined for this c,.) In particular, whatever the value of Ri is, 

c o =  1 or -2 at Ro= 1 .  (64) 

The velocity field of the fundamental mode can be obtained from (49) and (50): 

4RiRo 4RiRo e-2RiRoy 

~ o c , + i ~ ~ =  Roc,+i u, = 

. 4RiRo ' 4RiRo e-2RtRoy 

"O = 'Roc,+ 1 Roc,+ 1 v, = 1 

The orbit of each fluid particle is circular, and both divergence and vorticity vanish for 
this velocity field. 

The case of Ro+O is investigated as another special case. Here, (51)  and the 
boundary condition (47) becomes 

C 

-- d ~ - ~  at y = l .  
dY 

Substitution of 2{(RiRo2c2-Ri+2Ri/c)y}~ E z into (67) and (68) results in 

d2,q 1 d7 
dz2 z dz 
-+--+7 = 0, 

C 
- d q = O  at z = 2  RiRo2c2-Ri+- 
dz 

From (69) the regular solution at z = 0 is expressed by a Bessel function of zeroth 
order, 

T = J,W 
= J , (2{(RiRo2~2-Ri+2Ri /~)y}~) ,  (71) 
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and from the boundary condition (70), 

(72) 
I .  2(Ri Ro2 c i  - Ri+ 2Ri/c,)i = 2h; = J , + ] ,  

is obtained, where j,,,,, is the (n+ 1)th zero of dJ,(z)/dz = --J,(z). By putting 
Ro c, < 1, we can obtain c, for the Rossby modes, 

For the higher modes, the j,,,, are approximated as 

hence, the c, are estimated as 
jn+1,1- ( n + i ) n ,  

2 - (n+;)'n2/4Ri+ 1'  

Ri,, the value of Ri for which c, equals 1 is obtained as follows: 

(74) 

(75) 

Ri, - $(n + i)' x2. (76) 

4.4. Numerical solutions 
The numerical results obtained by solving the eigenvalue problem (42)-(44) under the 
boundary conditions (45) and (46) will be given in this subsection. The numerical 
method is described in detail in Appendix A. Figure 8 shows the dispersion relation 
( R e ( w , / f ) )  for the case R i =  3.0. For different value of Ri the qualitative 
characteristics are the same as in this case, although the curves are shifted 
quantitatively. As is expected from the earlier subsections, there are three types of wave 
modes in this system: 

Rossby waves (M,) R, R,  R,  ..., 
inertial gravity waves in the positive direction (M,) G: G i  G l  . . . , 
inertial gravity waves in the negative direction G; G; G; G; . . . . 

These three types of waves were also found in the models of Reid (1958) and Mysak 
(1968). 

The mode M ,  cannot be easily classified, because it is a mixture of a Rossby mode 
and a PoincarC mode. When the wavenumber is small, this mode behaves like a Rossby 
wave, but when the wavenumber is large, it behaves like an inertial gravity wave. This 
mixed mode M,, was also found in Reid's (1958) model, although not in Mysak's 
(1968). Furthermore, this mixed mode, in spite of the difference of the boundary 
conditions, has precisely the same dispersion relation and structure in the model 
considered now and in Reid's (1958) model, because this solution exactly satisfies both 
boundary conditions. Since this mode is the fundamental (zeroth) one, the features are 
known analytically as was seen before. In particular, for this M ,  mode, Roc exactly 
equals 1 (w* =fin dimensional units) at Ro = 1, whatever the value of Ri. For a small 
wavenumber, the M,, mode is like a Rossby wave, and for a large wavenumber it is like 
an inertial gravity wave as mentioned above, whose transition point is around 
Ro = 1, depending on which is greater, the frequency of the wave or the Coriolis 
parameter. 
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RO 

FIGURE 8. Roc = w J f  as a function of Ro at Ri = 3.0. The modes are categorized into three types: 
inertial gravity waves with large frequencies which propagate in the positive (C:) and in the negative 
(G;) directions, and Rossby waves with small frequencies propagating in the positive direction (R,). 
The Rossby waves are so close together that individual R, are not shown. The curves of G, with 
n > 2 are not labelled. 
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FIGURE 9. c as a function of Ro for Ri = 3.0. 



228 K .  Zga 

c = 3.7126 

. . .  
. . . .  . . > .  

I ,  

c = -3.2244 

: I :  I . .  . . . . .  . . .  . . .  . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  
, , , . _ . . I  3 I , , . .  

c = -4.2314 
I . . .  . . . . . .  . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  

. . . . .  . . . . .  

. . I . .  
" "  . . . . .  I 

. . . . . .  , . .  

2.1 

FIGURE 10. Pressure and velocity fields for the G;-, Gi-, Rl-, M,- and G;-modes, 
respectively, for Ri = 3.0, Ro = 0.5. 
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Figure 9 shows the relation between Ro and c, which can be easily compared to figure 
6. Figure 10 shows the structures of modes G;, C;, R,, Mo and G:, for Ri  = 3.0, 
RO = 0.5. 

5. Explanation of the unstable modes 
The dashed lines in figures 4, 5 and 6 show the Doppler-shifted dispersion curves of 

the neutral waves in the one-layer problem for the same Ri. (The dashed curves in 
figure 6, for example, can be obtained by shifting the curves in figure 9 by c = 1.) 

First, one can easily see that the bundles of dispersion curves around c = f 1 
correspond to the Rossby modes in each layer. There are many Rossby waves almost 
trapped in the lower layer, whose intrinsic phase speeds are very small, and their 
Doppler-shifted phase speeds become almost - 1. In the same way, the Doppler- 
shifted phase speeds of the Rossby waves almost trapped in the upper layer are almost 
equal to 1. 

By comparing the dispersion curves in the two-layer problem and those in the 
reduced one-layer problem, these figures make it clear which neutral waves resonate to 
cause each unstable mode. The unstable modes found in figure 3 are schematically 
classified in figure 11. 

The unstable mode named (R) by Orlanski (1968) is caused by a resonance between 
two Mo-modes (the mixed mode of a Rossby wave and an inertial gravity wave), and 
the (E)-mode is caused by two R,-modes (the first Rossby mode). This classification of 
the (E)-mode is consistent with the result by Orlanski (1968) that the (E)-mode is a 
baroclinic instability, because Sakai (1 989) showed that baroclinic instability is caused 
by a resonance between two Rossby waves. The mode (E) is, however, somewhat 
influenced by the interaction of Mo rather than caused purely by a resonance between 
two R,-modes, since there exists an (R)-mode caused by a resonance between two M,- 
modes in the vicinity of c - 0 where the R,-modes resonate. In the same way, the 
unstable modes caused by a resonance between two R,(n 2 2) modes (according to 
Orlanski 1968, these modes exist at Ri 2 n(n + 1)) are also influenced by the interaction 
between R,-modes (rn < n) and M,, although these new unstable modes do not appear 
in the region of Ri  < 3.0 shown here. 

Various kinds of unstable modes exist in the (H)-region; some of them are 
Rossby-gravity instability caused by resonance between a G,-mode and R-modes, and 
another is caused by a resonance between the GI-mode and the Mo-mode. As stated in 
the previous section, the Mo-wave behaves like an inertial gravity wave for Ro > 1 .  
Hence, this unstable mode caused by a resonance between the GI-mode and the Mo- 
mode at large R,, can be considered to be caused by a resonance between two inertial 
gravity waves (the first mode and the zeroth mode). Since Sakai (1989) showed that 
Kelvin-Helmholtz instability is caused by a resonance between two gravity waves, this 
mode can be regarded as a kind of Kelvin-Helmholtz instability. Orlanski (1968) 
investigated only a few cases in this (H)-region. He mainly investigated for the points 
on the line of Ro = 3.0, where this Mo-G,-mode does in fact spread, and seems to have 
imagined that this unstable mode spread over the whole (H)-region, thus concluding 
by mistake that the (H)-region corresponded to Kelvin-Helmholtz instability. 

The unstable mode, called (B) by Orlanski (1968) and suggested to be Rossby-Kelvin 
instability by Sakai (1989), is caused by a resonance between R ,  (a Rossby wave) and 
Mo (the mixed mode of a Rossby wave and an inertial gravity wave). Consequently, 
whether this suggestion is right depends on whether the Mo-mode is a Kelvin wave. In 
the strictest sense, it is a necessary condition of a Kelvin wave that the velocity 
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FIGURE 11. The classification of the obtained unstable modes. Mo-R1, for example, indicates that the 
unstable mode is caused by a resonance between M,-mode and R,-mode. There is no unstable mode 
in the cross-hatched regions. The unstable modes in the hatched areas have complex eigenvalues. 
Dashed lines indicate that there are other unstable modes over that one. 

component vertical to the boundary of the fluid vanishes. In a limited sense, if not so 
strict, such a wave is called a Kelvin wave if it possesses features of a gravity wave along 
the boundary (hence in the direction of propagation), and is almost balanced 
geostrophically in the direction vertical to the boundary. On the other hand, in a 
general sense, a wave that is the fundamental mode mixed with a Rossby wave and an 
inertial gravity wave in a certain system, could be called a ‘generalized Kelvin wave’. 
In this general sense, the Mo-mode is nothing other than a generalized Kelvin wave, 
and accordingly the (B)-mode can be called Rossby-Kelvin instability. Nevertheless, 
Sakai (1989) seems to have thought of the Kelvin wave in the limited sense, and to have 
regarded it as a kind of gravity wave, particularly noticing the features in the direction 
of propagation, since he expressed Rossby-Kelvin instability as ‘ an instability caused 
by a resonance between Rossby waves and gravity waves’. In this limited sense, it is not 
appropriate to call the Mo-mode a Kelvin wave, because it depends not on the direction 
but on the value of Ro, whether this mode maintains a geostrophic balance or not. 
Since an unstable mode (B) is located in the region Ro < 1, the resonating Mo-wave has 
features of a Rossby wave rather than an inertial gravity wave. Hence, the (B)-mode 
should be considered as a geostrophic instability caused by a resonance between the 
zeroth and the first Rossby modes, rather than between a Rossby wave and a gravity 
wave as suggested by Sakai (1989). Figure 12 illustrates the structure of the unstable 
mode (B). Comparing this figure with figure 10, it can be easily understood that Mo and 
R, resonate to cause the (B)-mode. 

The limiting case of Ri = 0 demands special consideration. Orlanski (1968) gave 
special treatment to this case: this problem is no longer a two-layer problem but is 
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. . . .  . .  . . . . . .  

23 1 

0 2.1 

FIGURE 12. The structure of the unstable (B)-mode (Ri = 3.0, Ro = 0.5): (a) pressure and velocity 
fields of the first (lower) layer, and (c) of the second (upper) layer. Interface height is shown in (b) .  
The field of the first layer is like that of the M,-mode and the second layer of the R,-mode. 

substantially a one-layer problem. Accordingly, this case cannot be described by the 
interaction between the modes in the reduced one-layer subsystems. However, this case 
is the problem of Rayleigh-shear instability and this instability can be interpreted as a 
horizontal interaction between two Rossby waves (vorticity waves) in the entire single 
layer (e.g. Hayashi & Young 1987; Sakai 1989). 

We have often used the term ‘a resonance of waves’. This idea can be understood 
in detail by using the concepts of ‘difference energy E’ or ‘difference momentum M’ 
(e.g. Cairns 1979; Hayashi & Young 1987; Sakai 1989).1. The difference energy is 
defined as the energy in the fluid where waves are excited minus that in the undisturbed 
fluid where waves are not excited. A mode with non-zero difference energy must be 
neutral. That is because, if such a mode is amplified, the energy of the whole system 
must be changed, and such a wave cannot be excited owing to the conservation of 
energy, as long as there are no external forces. Thus, the difference energy of an 

t They used the terms of ‘wave energy’ or ‘disturbance energy’ instead of ‘difference energy’. 
However, these terms are often used with a different meaning, and are confusing. 
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unstable mode must vanish. This leads to the important conclusion that two waves 
must have difference energies of opposite signs to resonate and form an unstable mode. 
The difference momentum is similarly defined and similar conclusions can be reached : 
two neutral waves which resonate to cause an unstable mode have difference momenta 
of opposite signs and the difference momentum of the unstable mode vanishes. These 
two criteria expressed by difference energy, E, and difference momentum, M ,  are 
equivalent, because of the simple relation E = cM between these two quantities. 
Particularly for two-layer problems, it was shown by Sakai (1989) that the difference 
momentum has the same sign as that of the intrinsic phase speed of the waves (the 
phase speed relative to the basic flow). 

This idea is applied to the problem considered here. Although there is no strong 
reason to choose either the difference energy or the difference momentum, whose 
analyses are equivalent, the difference momenta are calculated here, because the value 
of the difference energy depends on the frame of reference, while that of the difference 
momentum does not (Sakai 1989). The difference momentum is expressed as follows 
in dimensional units (see equation (2.31) in Hayashi & Young 1987 or ( 5 )  in Sakai 

(77) 1989): M* = MR* + M G * ,  

where 

M,* = (r* u;*> - (r* M i * > ,  (79) 
where (i are the particle displacements in the y,-direction, Q,, = f / r ,  and 
Q,, = f / ( H -  7,) are the potential vorticities of the basic state, and the angle brackets 
denote the spatial 
equations become 

where 

integral. Non-dimensionalizing M ,  by M ,  e (HAU/2) M ,  these 

M =  M,+M,, (80) 

MG ( ? l u l ) - ( ? l u 2 ) .  (82) 
The values of these difference momenta are plotted in figure 13. Each unstable mode, 
which itself has the difference momentum of zero, is formed by the interaction between 
a mode with positive difference momentum and a mode with negative difference 
momentum. 

Figure 14, which shows a broader range than figure 4, illustrates simultaneously the 
dispersion curves of two-layer and one-layer problems. In the region Ic,I > 1, there are 
several intersections of Gi-modes and G;-modes for the one-layer problem, which 
does not cause unstable modes for the two-layer problem. This is explained as follows : 
G+-mode in the first layer and a G--mode in the second, or vice versa, have intrinsic 
phase speeds of the same sign, and they do not resonate even if they intersect. 
Furthermore, two G--modes or an R and a G- never intersect. Consequently, although 
there are six combinations of waves in the first and second layers (regarding M,, as R 
or G+),  only three combinations of R-R, G+-Gf and R-G+ resonate to cause unstable 
modes in reality. That is why the plusses of the Gi-modes are eliminated in the names 
of unstable modes. 

Some analytical results of Kotschin (1932) and Orlanski (1932) can be interpreted as 
features of the waves in the reduced one-layer system, by using this idea of the 
resonance of waves. Kotschin (1932) showed that the curve indicating c = 0 has a 
singularity at Ro = 0, which can be explained as follows: as was shown in 94, the value 
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FIGURE 13. Difference momentum for the waves with positive phase speed at Ri = 3.0. The difference 
momenta of higher gravity modes are eliminated. Unstable modes are shown by thick lines. All the 
unstable modes have the difference momenta of zero. The difference momenta are normalized by 
wave amplitude (( y(ui + ut)  + (1 - y ) (u i  + 0;) + 4Ri TI*)).  The scale for positive momenta is multiplied 
by 10. 

-J 0 1 2 3 4 5 
Ro 

FIGURE 14. c, as a function of Ro at Ri = 1 .O. A broader region than in figure 4 is shown. There are 
some intersections of Gt and G- which do not resonate to cause unstable modes in the region of 
Ic,l ' 1 .  

of c for the M,-mode always becomes 1 at Ro = 1, whatever the value of Ri. For the 
two-layer problem, consequently, the Doppler-shifted phase speeds of the M,-modes 
vanish in both layers, and resonate to cause the (R)-mode (figure 15). 

Equation (76) shows that the value of Ri at which the value of c for the nth Rossby 
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Ro I 
FIGURE 15. Explanation of the singularity which the curve of c = 0 has at Ro = 1. (a) For the one- 
layer problem, the value of c for the M,-mode becomes 1 at Ro = 1, whatever the value of Ri. (b) 
Dashed lines indicate Doppler-shifted dispersion curves for the one-layer problem, and the solid lines 
dispersion curves for the two-layer problem. Doppler-shifted M,,-modes of the both layers intersect 
at Ro = 1, c = 0, and resonate to cause an unstable mode. 

mode with very long wavelength becomes 1 is almost proportional to n2. Since waves 
with phase speed c = 1 in the one-layer model are Doppler-shifted to resonate in the 
two-layer model, this corresponds to the result by Orlanski (1968) that a new unstable 
mode appears at Ri = n(n+ l), which is also almost proportional to n2. There is a 
difference between the coefficients of the n2, which is because the waves begin to 
resonate before their Doppler-shifted phase speeds coincide completely. 

Finally, let us see which unstable mode grows fastest for each value of Ri. The largest 
growth rate is associated with the Ma-R,-mode if Ri > 2.3, and with the M,-M,-mode 
if 1.0 < Ri < 2.3. On the other hand, if Ri < 1.0, unstable modes with large Ro caused 
by resonances between two higher G-modes have largest growth rates. Therefore, in 
this frontal system, geostrophic instability dominates if Ri > 1 .O, while Kelvin- 
Helmholtz instability with small scale dominates if Ri < 1.0. 

6. Conclusions 
The stability of the front model treated by Orlanski (1968) is re-examined using a 

matrix method, by which one can obtain all of the eigenvalues directly. Also, the 
features of the neutral waves in the reduced one-layer problem are investigated, and the 
results are summarized as follows : 

(i) The unstable modes called (H) and (B) were not described correctly by Orlanski 
(1968). Unstable modes do not cover the entire (Ri, Ro)-plane. 

(ii) The unstable modes studied by Orlanski (1968), and partly corrected in this 
paper, are classified by identifying which waves resonate to cause the instability. The 
unstable mode called (B) by Orlanski (1968), and suggested by Sakai (1989) to be a 
Rossby-Kelvin instability caused by a resonance between a Rossby wave and a gravity 
wave, is a geostrophic instability caused by a resonance between mode Ma (the mixed 
mode of a Rossby wave and a gravity wave) with long wavelength (accordingly, having 
features of a Rossby wave) and mode R, (the first Rossby mode). 

(iii) Some analytical characteristics of this problem, such as the singularity at 
Ro = 1 of the curve for c = 0, and the appearance of new unstable modes, are 
explained by the features of the neutral waves in the one-layer problem using the idea 
of resonance. 
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(iv) The largest growth rate is associated with a geostrophic unstable mode if 
Ri > 1.0, and with Kelvin-Helmholtz instability with small scale if Ri < 1.0. 
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Appendix A. Numerical calculations by finite differences 

in figure 16. c,, D, and FD, are calculated from u, and u, as follows (Ay = l /N):  
For the two-layer problem, the variables uj, u,, C,, D, and FD, are located as shown 

Cj(l-+) = 2iRiRo~j(2-2) -(l/A.~)(uj(Z) -uj(Z-lJ, 

Dj(l) = (l/AY)(uj(z+;) --,(,-;))+2iRiRouj(Z), 

FDj(2) = (~/AY)(Y,(~+;) uj(l+i) -Yj(t-;) uj(z-;)) +2iRiRo~j(,) uj(l), 

(A 1) 

(A 2) 

(A 3) 

where Y l ( 0  = i / N  YZ(Z)  = W-O/N* 
By using these variables, (38E(41) are finite differenced as follows: 

(A 8) 

(A 9) 

(A 10) 

iRo czqZ) = -z(u(z+;) 1 + q-;)) + 4iRi Ro v(~) ,  

iRo cu(,-;) = (1/2~(,-$)) (Y,,) yZ) + Y ( L - ~ )  u(2-l)) + ( ~ / A Y ) ( ~ w  --7(~-1))~ 

iRo ~ 7 ~ ~ )  = iRoy(,) U ( Z )  + (~/~R~AY)(Y(z+;) U(Z+;) -Y(z-+) “z-;)). 
For both the one-layer and two-layer problems, most computations were done with 
N = 20. The results were tested with N = 40 at some parameters. There was no 
important difference between results with N = 20 and those with N = 40. 

Appendix B. Laguerre functions 
The regular solution at z = 0 of the differential equation 

z d2U/dz2 + (1 - Z)  du/dz + vu = 0 
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FIGURE 16. Location of the vaziables. 

is Laguerre function of zeroth order, 
(-v),Zn 

n=o (n!)2  ’ 
24 = L?’(z) = F(-v, 1;z) = 2 

where 

As is evident from its definition, for v = 0,1,2, .  . ., the function L:)(z) becomes a 
polynomial with finite terms and is called Laguerre polynomial. 

U), = p(p+ 1). . . U+n-  1). 

Differentiating this function Lp)(z), we obtain 

If v < 0, z > 0, all the summed terms are positive, and the value of dL;,O)(z)/dz never 
vanishes. 

In the case of v = n+e(n = integer, 0 < e < l), L!:”)(z) almost equals to the 
polynomial of nth order L:)(z) within the range of moderate value of z, but as z grows 
to infinity, the absolute value of Lp)(z) grows exponentially with sign opposite to that 
of the coefficient of the highest term of LE)(z). Since all the terms higher than nth order 
include the small coefficient (- e), as e approaches zero, the largest extreme point goes 
to infinity. Therefore, when finding the v that makes z = zo the extreme point of L!o)(z), 
v approaches n, as zo grows to infinity. 
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